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Structure and classification of different 2D materials

" Graphene ot - 2D materlals B L

Metallic compounds /

Zn-TCPP MOF  Polymer

HHTP-DPB COF
Z v,

Salts
- N

".\-L\’ A

\»\o_\{\g
Yo% ¥
h-BN g-CsN4 ol 2 R Clays

of o ‘b A CI'C|3
\ . F \ y,

Silicene |

Non-metallic compounds
r R

Particle, 2022, 39(6), 2200031 DOI: 10.1002/ppsc.202200031



Materials

A AT

~ Mechanical cleavage Liquid vapour exfoliation Chemical synthesis

P e
\ Sticky tape w @ — % —

‘A .
&=, s
@ Ultra sonication

Substrate

Metal substrate

Physical vapour deposition ’ Chemical vapour deposition

Precursor

Substrate

Particle, 2022, 39(6), 2200031 DOI: 10.1002/ppsc.202200031



Why 2D materials for sensing?
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Highlights of 2D materials in various sensing devices
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Schottky Diodes
Ontogenetic Sensing
Ophthalmology Sensing
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Cancer Sensing

Interstitial Fluid Sensors

Wearable Biosensors J

FETs Biosensors
Humidity Sensing

Heavy metal lon Sensing
Fluorescent Sensors

Different types of sensors is presented, including
gas, electrochemical sensing, biomedical, and
healthcare sensors, with recent studies on the
active application areas of 2D materials.
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Biomedical sensors
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Biosensors based on 2D materials can be categorized, according to the usage of nanoscale components, into
physical or chemical types. These are extremely sensitive in different practical applications over a diverse range
of concentrations of analytes, including proteins, organic or inorganic molecules, viruses, and others. These
sensors have three basic components transistors, resistors, and capacitors located in integrated circuits.

Nanosensors for Smart Manufacturing, 1st Edition - June 10, 2021



Graphene based biomolecule sensing
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(A) Schematic diagrams of a flat (left) and a crumpled (right) graphene-based FET DNA sensor. DNA strands
stay on the surface of graphene. The crumpled graphene is more sensitive to the negative charges of DNA than
the flat version does. (B) Fabrication of graphene-based FET biosensors. The PS substrate is annealed to
shrink and crumple the graphene. (C) IV characteristics of the flat and the crumpled graphene-based FET

biosensors upon DNA absorption.

IScience 24, 103513, December 17, 2021 DOI: 10.1016/).isci.2021.103513



MoS, based biomolecule sensing
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Schematic diagram of a MoS,-based FET-based biosensor. For specifically capturing the target biomolecules,
the dielectric layer above the MoS, channel is functionalized with receptors. The charged biomolecules after
being captured induce a gating effect, modulating the device current. IV characteristics MoS,-based FET
biosensors. A critical problem of poor electric contact limits the development of more optimal MoS,-based
sensors. The problem stems from Fermi-level pinning in the interface between the MoS, and a metal.

ACS Nano 2014, 8, 4, 3992—-4003 DOI: 10.1021/nn5009148



The crystal structure of MoS,
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Characterization of the crystal structure of MoS,
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Aim (target) of the our Applied Bionics Laboratory (ABLab)

Development and fabrication
Applied Bioelectronics Devises

Development and Synthesis and research of Development 3D
automatization of polymers and TMDs for printing system for
mechanical test system creation sensors photo polymerization

e

Development of Synthesis in the laboratory Development of
software (based on of  flexible polymers design of necessary
LabVIEW) for (PDMS, PLLA or other) and optical and
automatic control of 2D materials  (MoS,, mechanical elements
the mechanical and graphene or similar). of the equipment.
optical measurements Creation of sensors on Creating software for

of the flexible their basis. Research of efficient operation of
electronic devices. mechano-electrical equipment.
properties.




Chemical Vapor Deposition (CVD)

> 1. Collection of equipment for synthesis of 2D materials
(molybdenum disulfide (MoS,) or similar).
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Design of sensors

> 2. Design of flexible field effect transistors (FETs) based on MoS,

Gate Dielectric

On the schematic description of the device fabrication process shown: a) deposition of
Au (or transferred graphene monolayer) as a back gate on flexible PET (polyethylene
terephthalate) substrate pre-coated PDMS (polydimethylsiloxane); b) deposition of oxides

(as example, HfO, layer) on the substrate; c) transferring MoS, film on the high-k HfO,
layer; d) fabrication of two-terminal MoS, device.




Micro-strain system

~ 3. Development and improvement of a micro-strain system for optoelectrical tests
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Grown and transfer MoS, on the flexible substrates
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Opti'cél”éuu'r'féée morphology of MoS,
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High-quality two-dimensional semiconductors were prepared by chemical vapor deposition (CVD). Optical
surface morphology of MoS, on Si/SiO, (a). MoS,/Gr is prepared by PMMA transfer and transferred to a flexible
substrate (b-f).

Chen W. et al. NANO 2023, Abstract on conference



Raman spectra
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Raman spectra of monolayer-MoS,/graphene structures on different substrates and precursor ones, as well as
their morphology images. Aq, = 532 nm.

Chen W. et al. NANO 2023, Abstract on conference



Raman mapping of MoS,

a. u.) Intensity (a. u.)

(a) The optical photo of surface MoS, flakes grown on SiO,/Si substrate by CVD method. (b, €) The Raman
mapping area of MoS, flakes (triangle and star). The mapping of E,4 (c, f) and A4 (d, g) bands corresponds to
the area in the optical photo.

Raman mapping showed good quality MoS, monolayers, but that area is not large and only flakes. We need
to continue studying the growth modes to get large monolayers, that are easier to use in flexible electronics.

Oiu Y. et al. NANO 2022, Abstract on conference



Development Graphene field effect transistors (G-FET)

g 1 2 3 4
&5 PMMA  —
7 s
7 O0Y .
- = o =)
_ Cu (NH,):520
@Zhu Huiyu solution
Copper based Spin cuating_ by Place onthe surface of ammonium Etched copper
graphene PMMA solution persulfate solution (PMMAface up)
8 R S—— s >
Diagram of | '
transferring - 4= .~
monolayer =y AP R
Graphene - ) :

i i Tapnene on Remove PMMA G-PMMA film was G-PMMA film was
ona SIOZ/SI silicon substrate with acetone transferred to Si wafer obtained
substrate. g % 10 %

e
- )
// \Q S /
(/ (O%@f’// Mask with electrode pattern Sputtered gold electrode Back gate graphene field
bl effect transistor

To perform selective detection of Cu* ions, valinomycin (Cg,HgyN:O45) based ion selective membrane
(ISM) with 5 um nominal thickness will be spin-coated on the entire transferred graphene area and kept
at room temperature for 20 minutes for complete solvent volatilization and stable film formation.

Zhy H. et al. NANO 2021, Abstract on conference




Transferring monolayer on a SiO.,/Si substrate (morphology)

Diagram of sensor unit cell Back gate graphene field effect transistor
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Vibration properties graphene monolayer

. Diagram of sensor unit cell Back gate graphene field effect transistor
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Raman vibrational graphene were responsible for the G-, D- and 2D-bands. Lin Chubin
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Electrical properties of G-FET
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Conclusions
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1)

2)

3)

2D materials contribute to developing physical,
chemical, bio, and wearable sensors. The large
contact surface area in a small volume ratio is
one of the key points for this type of 2D-based
sensor, achieving a good limit of detection and
sensitivity.

The mono- and few-layer of MoS, flakes
(triangles and stars) were grown. Raman
spectroscopy was used to get information about
the quality of the MoS,/graphene structure.
MoS, flakes were transferred to a flexible
substrate to develop a flexible electronic device.

The growth of a high-quality defect-free MoS,
monolayer on large areas is still open and will give
prospects for implementation in flexible electronics.
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